Circulating antibodies are synthesized and secreted by which of the following cells

A:T memory cells B:B memory cells C:T helper cells D:Plasma cells E:T cytotoxic cells

Regeneration of Limbs Most people would agree that it would be wonderful if humans could regenerate limbs. Those who have lost their arms or legs would be complete again. The day is still far off when this might happen. But in the last 10 years, doctors have reported regeneration in smaller parts of the body, most often fingers. Regeneration is not a newly-discovered process. For centuries, scientists have seen it work in some kinds of animals. Break off a lizards (蜥蜴的) tail, for example, and it will grow a new tail. Scientists now are looking for a way to turn on this exciting ability in more highly-developed animals, including humans. Their experiments show that nerves, cell chemistry and the natural electric currents in the body all seem to have a part in this process. The body of every animal contains general purpose cells that change into whatever kind of cells the body needs. Animals such as the lizard or salamander (蝾螈) use these cells to regenerate a new tail or leg when the old one is broken off. These cells collect around the wound. They form a mass called a blastema (胚基). The cells of the blastema begin to change. Some become bone cells, some muscle cells, some skin cells. Slowly, a new part re-grows from the body outward. When completed, the new part is just like the old one. More than 200 years ago, Italian scientist Luigi Spallanzani showed that younger animals have a greater ability to regenerate lost parts than older animals. So do animals lower on the ladder of evolutionary development. The major difference seems to be that less-developed animals have more nerves in their tails and legs than humans do in their arms and legs. Another helpful piece of information was discovered in the late 1800s. Scientists found that when a creature is injured, an electrical current flows around the wound. The strength of the current depends on how severe the wound is and on how much nerve tissue is present. In 1945, American scientist Meryl Rose tested another idea about regeneration. He thought a new limb might grow only from an open wound. Doctor Rose cut off the front legs of some frogs, below the knee. He kept the wounds wet with a strong salty liquid. This prevented skin from growing over the wounds. The results were surprising. Frogs do not regenerate new legs naturally. But these frogs began to grow new limbs. About half of each cut-off leg grew back again. New bones and muscles developed. This research has led doctors to new ways of treating cut-off fingers. Doctors have observed, for example, that many children and some adults will re-grow the top of a finger if the wound is left open. Regeneration of a part of the body is impossible without______.

A:bone cells B:general purpose cells C:muscle cells D:skin cells

Regeneration of Limbs
Most people would agree that it would be wonderful if humans could regenerate limbs. These who have lost their arms or legs would be complete again. The day is still far off when this might happen. But in the last 10 years, doctors have reported regeneration in smaller parts of the body, most often fingers.
Regeneration is not a newly-discovered process. For centuries, scientists have seen it work in some kinds of animals. Break off a lizard’s (蜥蜴的) tail, for example, and it will grow a new tail. Scientists now are looking for a way to turn on this exciting ability in more highly-developed animals, including humans. Their experiments show that nerves, cell chemistry and the natural electric currents in the body all seem to have a part in this process.
The body of every animal contains general purpose cells that change into whatever kind of cells the body needs. Animals such as the lizard or salamander (蝾螈) use these cells to regenerate a new tail or leg when the old one is broken off. These cells collect around the wound. They form a mass called a blastama (胚基). The cells of the blastema begin to change. Some become bone cells, some muscle cells, some skin cells. Slowly, a new part regrows from the body outward. When completed, the new part is just like the old one.
Mote than 200 years ago, Italian scientist Luigi Spallanzani showed that younger animals have a greater ability to regenerate lost parts than older animals. So do animals lower on the ladder of evolutionary development. The major difference seems to be that less-developed animals have more nerves in their tails and legs than humans do in their arms and legs.
Another helpful piece of information was discovered in the late 1600s. Scientists found that when a creature is injured, an electrical current flows around the wound. The strength of the current depends on how severe the wound is and on how much nerve tissue is present.
In 1945, American scientist Meryl Rose tested another idea about regeneration. He thought a new limb might grow only from an open wound. Doctor Rose cut off the front legs of some frogs, below the knee. He kept the wounds wet with a strong salty liquid. This prevented skin from growing over the wounds. The results were surprising. Frogs do not regenerate new legs naturally. But these frogs began to grow new limbs. About half of each cut-off leg grew back again. New bones and muscles developed.
This research has led doctors to new ways of treating cut-off fingers. Doctors have observed, for example, that many children and some adults will regrow the top of a finger if the wound is left open.

Regeneration of a part of the body is impossible without( )

A:general purpose cells. B:bone cells. C:muscle cells. D:skin cells.

Countless people are born with(生来就具有某种特点)the susceptibility to inherit a genetic disease. But scientific progress, especially the art of interfering with(干涉,阻碍) the genetic makeup of the human body, has helped doctors prevent more and more inherited disorders in the last decade.
Dr. Thomas Caskey of the Baylor University College of medicine in Houston, Texas, is a pioneer in molecular biology(分子生物学). Through the techniques of genetic engineering(基因工程), he transfers genes from one organism to another. Caskey uses a certain type of virus, called a retrovirus(逆转录病毒), as the vehicle for the gene transfer. He first cripples the virus by removing the portion it needs to reproduce itself. The crippled virus becomes harmless while still being able to deliver a cargo to its destination.
The cargo in Caskey’s experiment is the human A-D-A gene, taken from bone marrow. A-D-A stands for(代表) adenosine deaminase(腺苷脱氨酶), an important component of the human immune system. A defect in the A-D-A gene leads to immune deficiency, rendering(致使) the body defenseless against infections. Caskey’s purpose was to see if the human A-D-A gene could repair the defective immune system of a mouse.
In the experiment the mouse was given a dose of radiation heavy enough to destroy its immune system. The animal next was injected with the crippled virus carrying the human A-D-A gene. According to Caskey, "the mouse will die within 10 to 14 days unless a successful transfer of bone marrow cells takes place. So we lethally irradiate and subsequently rescue the mouse by bone marrow transplantation(骨髓移植)with the cells that have been infected with the virus." The mouse now carries the human gene that salvaged its immune system.
Bone marrow transplantation has an established place in contemporary medical practice. Employed to restore the immune system of certain cancer patients and of people who have been exposed to radiation, bone marrow transplantation works only if there is a good match between donor and recipient.
The procedure would be much easier if bone marrow were like blood. People with type O blood are universal donors(万能供体). Their blood may be transfused to those who have different blood types. Unfortunately, there is no such thing as a universal bone-marrow type. Researchers may have found a way, however, to overcome this problem. The solution, if it works, would be to implant the patient with his own, perfectly matching(型配), bone marrow.
The idea, as Caskey explains it, is to "correct the patient’s disease with his own ceils, but those cells have added to them a normally functioning gene. "In other words, surgeons would take defective bone-marrow cells from the patient and put them into a laboratory dish where the cells would be exposed to a crippled virus carrying a healthy AD-A gene from a donor. The A-D-A gene would repair the defective cells and then the cells would be reinjected into the patient. Thus, in Caskey words, "the patient would be transplanted by his own ceils containing the added normal gene."
The technique sounds deceptively(靠不住地) simple. In reality, though(可是,不过, 然而), it is complex. A number of laboratories have tested various intermediate steps of the process, but, according to Caskey, "no single laboratory has put together the entire technology successfully, and highly reproducibly, to proceed with a gene transfer at-tempt in man."
For some time now, the U.S. National Institute of Health has been taking a close look at(仔细,研究) the effectiveness and safety of the procedure, as well as the ethical questions it raises. There doesn’t seem to be much concern about the ethics of gene transfer into a human being to correct a genetic defect.
Dr. W. French Anderson of N. I. H. wrote recently that "claims that new organs, designed personalities, master races, or Frankenstein(佛兰肯思泰因,一个创造怪物而自己被它毁灭的医学研究者,英国女作家Mary W.Shelly同名小说中的主角) monsters will be created can be given no credence in the light of(根据,从……来看) what is presently known. "And he added that a well-informed public is the best assurance against any future misuses of genetic engineering.

Where is the A-D-A gene taken from in Caskey’s experiment()

A:human blood B:human bone marrow C:mouse blood D:mouse bone marrow

Countless people are born with(生来就具有某种特点)the susceptibility to inherit a genetic disease. But scientific progress, especially the art of interfering with(干涉,阻碍) the genetic makeup of the human body, has helped doctors prevent more and more inherited disorders in the last decade.
Dr. Thomas Caskey of the Baylor University College of medicine in Houston, Texas, is a pioneer in molecular biology(分子生物学). Through the techniques of genetic engineering(基因工程), he transfers genes from one organism to another. Caskey uses a certain type of virus, called a retrovirus(逆转录病毒), as the vehicle for the gene transfer. He first cripples the virus by removing the portion it needs to reproduce itself. The crippled virus becomes harmless while still being able to deliver a cargo to its destination.
The cargo in Caskey’s experiment is the human A-D-A gene, taken from bone marrow. A-D-A stands for(代表) adenosine deaminase(腺苷脱氨酶), an important component of the human immune system. A defect in the A-D-A gene leads to immune deficiency, rendering(致使) the body defenseless against infections. Caskey’s purpose was to see if the human A-D-A gene could repair the defective immune system of a mouse.
In the experiment the mouse was given a dose of radiation heavy enough to destroy its immune system. The animal next was injected with the crippled virus carrying the human A-D-A gene. According to Caskey, "the mouse will die within 10 to 14 days unless a successful transfer of bone marrow cells takes place. So we lethally irradiate and subsequently rescue the mouse by bone marrow transplantation(骨髓移植)with the cells that have been infected with the virus." The mouse now carries the human gene that salvaged its immune system.
Bone marrow transplantation has an established place in contemporary medical practice. Employed to restore the immune system of certain cancer patients and of people who have been exposed to radiation, bone marrow transplantation works only if there is a good match between donor and recipient.
The procedure would be much easier if bone marrow were like blood. People with type O blood are universal donors(万能供体). Their blood may be transfused to those who have different blood types. Unfortunately, there is no such thing as a universal bone-marrow type. Researchers may have found a way, however, to overcome this problem. The solution, if it works, would be to implant the patient with his own, perfectly matching(型配), bone marrow.
The idea, as Caskey explains it, is to "correct the patient’s disease with his own ceils, but those cells have added to them a normally functioning gene. "In other words, surgeons would take defective bone-marrow cells from the patient and put them into a laboratory dish where the cells would be exposed to a crippled virus carrying a healthy AD-A gene from a donor. The A-D-A gene would repair the defective cells and then the cells would be reinjected into the patient. Thus, in Caskey words, "the patient would be transplanted by his own ceils containing the added normal gene."
The technique sounds deceptively(靠不住地) simple. In reality, though(可是,不过, 然而), it is complex. A number of laboratories have tested various intermediate steps of the process, but, according to Caskey, "no single laboratory has put together the entire technology successfully, and highly reproducibly, to proceed with a gene transfer at-tempt in man."
For some time now, the U.S. National Institute of Health has been taking a close look at(仔细,研究) the effectiveness and safety of the procedure, as well as the ethical questions it raises. There doesn’t seem to be much concern about the ethics of gene transfer into a human being to correct a genetic defect.
Dr. W. French Anderson of N. I. H. wrote recently that "claims that new organs, designed personalities, master races, or Frankenstein(佛兰肯思泰因,一个创造怪物而自己被它毁灭的医学研究者,英国女作家Mary W.Shelly同名小说中的主角) monsters will be created can be given no credence in the light of(根据,从……来看) what is presently known. "And he added that a well-informed public is the best assurance against any future misuses of genetic engineering.

What is the most important condition when bone marrow transplantation is used to restore the immune system of certain patients()

A:a good match between donor and recipient B:the freshness of the bone marrow C:enough quantity of the bone marrow D:a universal bone-marrow type

Regeneration of Limbs Most people would agree that it would be wonderful if humans could regenerate limbs. Those who have lost their arms or legs would be complete again. The day is still far off when this might happen. But in the last 10 years, doctors have reported regeneration in smaller parts of the body, most often fingers. Regeneration is not a newly-discovered process. For centuries, scientists have seen it work in some kinds of animals. Break off a lizards (蜥蜴的) tail, for example, and it will grow a new tail. Scientists now are looking for a way to turn on this exciting ability in more highly-developed animals, including humans. Their experiments show that nerves, cell chemistry and the natural electric currents in the body all seem to have a part in this process. The body of every animal contains general purpose cells that change into whatever kind of cells the body needs. Animals such as the lizard or salamander (蝾螈) use these cells to regenerate a new tail or leg when the old one is broken off. These cells collect around the wound. They form a mass called a blastema (胚基). The cells of the blastema begin to change. Some become bone cells, some muscle cells, some skin cells. Slowly, a new part re-grows from the body outward. When completed, the new part is just like the old one. More than 200 years ago, Italian scientist Luigi Spallanzani showed that younger animals have a greater ability to regenerate lost parts than older animals. So do animals lower on the ladder of evolutionary development. The major difference seems to be that less-developed animals have more nerves in their tails and legs than humans do in their arms and legs. Another helpful piece of information was discovered in the late 1800s. Scientists found that when a creature is injured, an electrical current flows around the wound. The strength of the current depends on how severe the wound is and on how much nerve tissue is present. In 1945, American scientist Meryl Rose tested another idea about regeneration. He thought a new limb might grow only from an open wound. Doctor Rose cut off the front legs of some frogs, below the knee. He kept the wounds wet with a strong salty liquid. This prevented skin from growing over the wounds. The results were surprising. Frogs do not regenerate new legs naturally. But these frogs began to grow new limbs. About half of each cut-off leg grew back again. New bones and muscles developed. This research has led doctors to new ways of treating cut-off fingers. Doctors have observed, for example, that many children and some adults will re-grow the top of a finger if the wound is left open. Regeneration of a part of the body is impossible without______.

A:bone cells B:general purpose cells C:muscle cells D:skin cells

微信扫码获取答案解析
下载APP查看答案解析