限制性核酸内切酶,简称限制酶,是一类能识别双链DNA分子中特定的核苷酸序列,并在识别序列内或附近切割DNA双链结构的核酸酶。

限制性核酸内切酶切割DNA后不会产生

A:黏性末端 B:5′黏性末端 C:3′黏性末端 D:平末端 E:单链缺口

 核酸探针指由人工标有特定标志物的单链核酸(DNA或RNA)片段,它能以碱基配对互补的方式与具有对应碱基序列的单链核酸结合,用来检测样品中的核酸与探针是否具有同源性,以及同源片段的大小。

关于核酸探针,与cDNA探针的特点不相符的是

A:标记方法成熟,有多种标记方法可供选择 B:可以克隆到质粒载体中进行无限繁殖,制备方法简便 C:适用于基因表达的检测 D:相对于RNA而言,cDNA探针不易降解 E:不含有基因的内含子序列,用于检测基因表达时杂交效率要明显低于DNA探针

 核酸探针指由人工标有特定标志物的单链核酸(DNA或RNA)片段,它能以碱基配对互补的方式与具有对应碱基序列的单链核酸结合,用来检测样品中的核酸与探针是否具有同源性,以及同源片段的大小。

关于寡核苷酸探针,叙述正确的是

A:序列短,对碱基组成和探针结构要求不高 B:杂交时间长,杂交信号强 C:灵敏性和特异性都很高 D:可以用于点突变的检测 E:制备方法复杂,价格较高

随着现代分析技术的发展和应用,出现了多种从根本原理上创新的测序方法和序列分析技术,为DNA分子的序列分析提供了多种新的选择。

单分子测序技术需要对单链DNA分子荧光标记的碱基是

A:A B:T C:C D:G E:所有碱基

核酸探针指由人工标有特定标志物的单链核酸(DNA或RNA)片段,它能以碱基配对互补的方式与具有对应碱基序列的单链核酸结合,用来检测样品中的核酸与探针是否具有同源性,以及同源片段的大小。关于寡核苷酸探针,叙述正确的是()

A:序列短,对碱基组成和探针结构要求不高 B:杂交时间长,杂交信号强 C:灵敏性和特异性都很高 D:可以用于点突变的检测 E:制备方法复杂,价格较高

核酸探针指由人工标有特定标志物的单链核酸(DNA或RNA)片段,它能以碱基配对互补的方式与具有对应碱基序列的单链核酸结合,用来检测样品中的核酸与探针是否具有同源性,以及同源片段的大小。关于核酸探针,与cDNA探针的特点不相符的是()

A:标记方法成熟,有多种标记方法可供选择 B:可以克隆到质粒载体中进行无限繁殖,制备方法简便 C:适用于基因表达的检测 D:相对于RNA而言,cDNA探针不易降解 E:不含有基因的内含子序列,用于检测基因表达时杂交效率要明显低于DNA探针

限制性内切酶可以专一性识别()

A:双链DNA的特定碱基对 B:双链DNA的特定碱基顺序 C:特定的三联密码子

细菌的错配修复机制可以识别复制时新旧DNA链之间错误配对的碱基,这是因为()。

A:新DNA链含有错误的碱基 B:旧DNA链更倾向于含有错误碱基 C:旧DNA链在特殊位点含有甲基化基团 D:新DNA链在特殊位点含有甲基化基团 E:DNA聚合酶与新链结合

化学降解法是一种传统的测定DNA碱基序列的方法。特定化学试剂的处理能使DNA单链在某种特定碱基处断开,且每条链只在一处断开;利用凝胶电泳可将不同长度的DNA片段彼此分离,通过放射自显影可使带标记的DNA片段在X光底片上显现出相应谱带。下图为测定已标记后的DNA片段中胞嘧啶位置的过程示意图。下列叙述正确的是()

A:使用特定化学试剂的作用是破坏碱基之间的氢键 B:此过程需解旋酶、限制性核酸内切酶和DNA聚合酶的参与 C:测定此DNA片段中鸟嘌呤位置时,X光底片上会显现2种不同长度的谱带 D:从理论上分析,按图中模式操作两次即可测定出DNA片段的全部碱基顺序

斯坦福大学的科学家们制造出了一种分子扩大了的DNA,其双螺旋结构比自然界已发现的任何一种DNA都要宽。这种大分子DNA不仅耐热性好,而且还能在__中发光——这一特性可能对检查人体基因缺陷十分有用。
DNA的典型形态是双螺旋结构——两组平行的基因信息像一根长长的盘旋的梯子一样联结在一起。每一节梯子都由两个互补的碱基组成,它们组合在一起成为碱基对。
自然界只有4种天然碱基,它们是:腺嘌呤(A),鸟嘌呤(G),胞嘧啶(C),胸腺嘧啶(T)。由于4种碱基各自独特的形态和大小,T常常与A配对,G常常与C配对。其他的配对形式(如A配C,G配T)都会因为太宽或太窄而不能形成双螺旋结构。
人类DNA由约30亿个碱基对按特定顺序排列组成,它们将人类健康生存所需要的基因信息拼写出来。只要一两对碱基对的排列顺序出错,基因密码就会出现混乱,从而导致婴儿在出生时会出现可怕的畸形或导致像癌症和镰状细胞贫血症这样的疾病。
加利福尼亚理工学院的化学家纳尔逊·伦纳德在20世纪70年代做过一个实验,他将一个苯环嵌入碱基A,得到了一个大碱基xA,xA比普通碱基A宽了约33%。斯坦福大学的科尔和他的同事们继续了伦纳德的实验。
斯坦福大学的这个研究组使用与伦纳德相似的方法得到了xT——一种大小为自然T两倍的合成碱基。接下来的挑战是将这些大碱基嵌入双螺旋结构。
他们通过将xA与自然T组合,xT与自然A组合,从而合成了完美的双螺旋结构。一种比自然DNA宽了约20%的新的稳定的DNA形态诞生了,研究人员将它命名为“扩展DNA”或“xDNA”。
研究人员发现xDNA有几个比自然DNA更加优良的特点。比如说,xDNA比自然DNA的耐热性好。在实验室环境下,自然DNA的分解温度是21.3摄氏度,而xDNA在55.6摄氏度时还依然保持完整。
科尔说:“一般说来,体积大的物体比体积小的物体耐热性好,DNA也不例外。”
他补充说,大一些的分子一般会发出荧光,这也许能解释为什么自然DNA不发光,而xDNA却发出一种紫色光,使它在显微镜下被看得很清楚。
在自然界,DNA携带了所有的遗传信息并传给后代。科尔正在研究xDNA是否也有这种功能。
不过他警告说:“这种新的DNA不太可能在地球上的自然环境中发挥功能,因为它太大了。不过,我们希望,有一天它会成为地球上或是其他星球上的一种新的生命形式的基因物质,这样当我们往其他星球上派探测机器人时,我们就会知道要在冰层下寻找什么样的生命形态。”
下面对“双螺旋结构”和“碱基对”的解说,有误的一项是______。

A:双螺旋结构是DNA的典型形态,它由两组平行的基因信息像一根长的盘旋的梯子一样联结而成,故名“双螺旋” B:碱基对是双螺旋结构的基本单元,它由两个功能互补的碱基组成 C:碱基的配对受形态和大小的限制,有较稳定的配对形式,太宽或太窄的配对形式都不能形成双螺旋结构 D:人类DNA由约30亿个碱基对按特定顺序排列组成,它们将人类健康生存所需要的基因信息拼写出来

微信扫码获取答案解析
下载APP查看答案解析