1895年11月8日,德国物理学家伦琴在实验室内研究阴极射线管放电现象时,发现用黑纸包着的照相底片感光了。用黑纸包着的阴极射线管通电后,发现在其附近的一块涂有铂氰化钡的纸屏上发出绿色荧光,关闭电源,荧光消失。根据上述现象,伦琴推测,一定是从阴极射线管发出一种新射线,并发现这种射线具有一定的特性,为此,他把这种未知射线起名为X线。X线的产生原理是高速电子和靶物质相互作用的结果。在真空条件下高千伏的电场产生的高速电子流与靶物质的原子核和内层轨道电子作用,分别产生了连续X线和特征X线。高速电子和靶物质相互作用过程中,将会发生碰撞损失和辐射损失,最终高速电子的动能变为辐射能、电离能和热能。三种能量的比例随入射电子能量的变化和靶物质性质的差别而不同。

对X线的描述,以下正确的是

A:X线的硬度大→频率高→穿透力强 B:X线的硬度大→波长长→穿透力强 C:X线的硬度大→频率低→穿透力弱 D:X线的硬度大→波长短→穿透力弱 E:X线的硬度大→半值层小→穿透力强

1895年11月8日,德国物理学家伦琴在实验室内研究阴极射线管放电现象时,发现用黑纸包着的照相底片感光了。用黑纸包着的阴极射线管通电后,发现在其附近的一块涂有铂氰化钡的纸屏上发出绿色荧光,关闭电源,荧光消失。根据上述现象,伦琴推测,一定是从阴极射线管发出一种新射线,并发现这种射线具有一定的特性,为此,他把这种未知射线起名为X线。X线的产生原理是高速电子和靶物质相互作用的结果。在真空条件下高千伏的电场产生的高速电子流与靶物质的原子核和内层轨道电子作用,分别产生了连续X线和特征X线。高速电子和靶物质相互作用过程中,将会发生碰撞损失和辐射损失,最终高速电子的动能变为辐射能、电离能和热能。三种能量的比例随入射电子能量的变化和靶物质性质的差别而不同。

与连续X线的最短波长有关的是

A:管电压 B:管电流 C:照射时间 D:电子电量 E:光子数量

1895年11月8日,德国物理学家威·康·伦琴在实验室内研究阴极射线管放电现象时,发现用黑纸包着的照相底片感光了。用黑纸包着的阴极射线管通电后,发现在其附近的一块涂有铂氰化钡的纸屏上发出绿色荧光,关闭电源,荧光消失。根据上述现象,伦琴推测,一定是从阴极射线管发出的一种新射线,并发现这种射线具有一定的特性,为此,他把这种未知射线起名为X线。X线的产生原理是高速电子和靶物质相互作用的结果。在真空条件下高千伏的电场产生的高速电子流与靶物质的原子核和内层轨道电子作用,分别产生了连续X线和特征X线。高速电子和靶物质相互作用过程中,将会发生碰撞损失和辐射损失,最终高速电子的动能变为辐射能、电离能和热能。三种能量的比例随入射电子能量的变化和靶物质性质的差别而不同。

与连续X线的最短波长有关的是

A:管电压 B:管电流 C:照射时间 D:电子电量 E:光子数量

X射线光子与物质发生相互作用的过程是能量传递的过程。当入射光子的能量取值不同时,发生的作用形式是不同的。光电效应的发生条件是()

A:入射光子能量与轨道电子结合能必须是接近相等 B:入射光子能量远远小于轨道电子结合能 C:入射光子能量远远大于轨道电子结合能 D:入射光子能量稍小于轨道电子结合能 E:入射光子能量与外层轨道电子结合能相等

当入射X射线光子和原子内一个轨道电子发生相互作用时,光子损失一部分能量,并改变运动方向,电子获得能量而脱离原子,这个过程称为康普顿效应。损失能量后的X射线光子称为散射光子,获得能量的电子称为反冲电子。入射光子被散射时波长的改变,错误的是()

A:波长变长 B:与电子的静止质量有关 C:与散射角有关 D:与入射光子的波长无关 E:与入射光子的波长有关

能量为hv的X(γ)射线光子通过物质时,与物质原子的轨道电子发生相互作用,把全部能量传递给这个电子,光子消失,获得能量的电子挣脱原子束缚成为自由电子(称为光电子);原子的电子轨道出现一个空位而处于激发态,它将通过发射特征X射线或俄歇电子的形式很快回到基态,这个过程称为光电效应。入射X射线光子的能量将最终转化为()

A:光电子的动能 B:俄歇电子的动能 C:特征X射线能量 D:以上都是 E:以上都不是

射线的线质越硬,其光子能量越大,衰减系数()。

A:不变 B:越大 C:越小 D:以上都不对

X射线光子与物质发生相互作用的过程是能量传递的过程。当入射光子的能量取值不同时,发生的作用形式是不同的。 光电效应的发生条件是()

A:入射光子能量与轨道电子结合能必须是接近相等 B:入射光子能量远远小于轨道电子结合能 C:入射光子能量远远大于轨道电子结合能 D:入射光子能量稍小于轨道电子结合能 E:入射光子能量与外层轨道电子结合能相等

微信扫码获取答案解析
下载APP查看答案解析