定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.

(1)已知:如图1,四边形
是“等对角四边形”,
,
,
.求
,
的度数.
(2)在探究“等对角四边形”性质时:
① 小红画了一个“等对角四边形”
(如图2),其中
,
,此时她发现
成立.请你证明此结论.
② 由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.
(3)已知:在“等对角四边形”
中,
,
,
,
.求对角线
的长.
(1)130°,80°,(2)①证明见解析;②画图见解析;(3).
【解析】(1)如图1,∵等对角四边形ABCD,∠A≠∠C,∴∠D=∠B=80°,
∴∠C=360°-70°-80°-80°=130°;
(2)①如图2,连接BD,
∵AB=AD,∴∠ABD=∠ADB,∵∠ABC=∠ADC,∴∠ABC-∠ABD=∠ADC-∠ADB,
∴∠CBD=∠CDB,∴CB=CD,
②不正确,反例:如图3,∠A=∠C=90°,AB=AD,但CB≠CD,
(3)(Ⅰ)如图4,当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,
∵∠ABC=90°,∠DAB=60°,AB=5,∴AE=10,∴DE=AE-AD=10-4=6,∵∠EDC=90°,∠E=30°,∴CD=2,∴AC=
(Ⅱ)如图5,当∠BCD=∠DAB=60°时,过点D作DE⊥AB于点E,DF⊥BC于点F,
∵DE⊥AB,∠DAB=60°AD=4,∴AE=2,DE=2,∴BE=AB-AE=5-2=3,∵四边形BFDE是矩形,∴DF=BE=3,BF=DE=2,∵∠BCD=60°,∴CF=,∴BC=CF+BF=+2=3,∴
AC=.